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Noise-enhanced stability of periodically driven metastable states
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We study the effect of noise-enhanced stability of periodically driven metastable states in a system described
by piecewise linear potential. We find that the growing of the average escape time with the intensity of the
noise is depending on the initial condition of the system. We analytically obtain the condition for the noise
enhanced stability effect and verify it by numerical simulations.
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Escape from a metastable state is a phenomenon obse
in several scientific areas. Among them there are the the
of diffusion in solids, chemical kinetics, and transport
complex systems@1#.

The mean first passage time~MFPT! of a Brownian par-
ticle moving in potential fields usually decreases with no
intensity according to the Kramers formula@2# or some uni-
versal scaling function of the system parameters@3,4#. The
dependence on the noise intensity of the MFPT for me
stable and unstable systems was revealed to have reson
character first noted by Hirschet al. @5# and then observed in
different physical systems@6–11#. The most important con
clusion of these studies is that the noise can modify the
bility of the system in a counterintuitive way. The syste
remains in the metastable state for a longer time than in
deterministic case and the escape time has a maximu
some noise intensity. Noise-enhanced stability~NES! was
originally found numerically by Dayanet al. @6#, and ob-
served experimentally in a tunnel diode by Mantegna a
Spagnolo@8#. More recently, it was found that the nois
induced slowing down@10# and the noise-induced stabiliza
tion @11# are related to NES phenomenon@8#.

Some questions arise from previous studies.~i! What is
the reason of the increase of the average escape time wit
noise intensity?~ii ! What about the condition for which th
NES effect takes place? To answer both questions we in
tigate the escape time from a periodically driven metasta
state for a piecewise linear potential. We study the natur
this phenomenon analytically. We find that for fixed potent
the decay time of unstable initial state can be dramatic
increased by the presence of a small noise depending on
initial condition of the system. We obtain the condition f
the NES effect, as an explicit relation between the driv
frequency and the parameters of the potential.

We consider the model of overdamped Brownian mot
described by the equation

dx

dt
52

]U~x!

]x
1F~ t !1j~ t !, ~1!

where j(t) is the white Gaussian noise with zero mea
^j(t)j(t1t)&52qd(t), F(t) is the dichotomous driving
force, andU(x) is a potential profile defined as
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U~x!5H `, x50

hx, 0,x<l

E2k~x2l !, l <x,b,

~2!

with E5hl . Specifically we assumek.0 anduF(t)u,k.
First we consider the system governed by Eq.~1! with

F(t)50 and potential (2) with arbitraryh. If h.0 (E
.0) the states atx,l become metastable. The exact e
pression of the MFPT from initial positionx0 to boundaryb
is known for the caseF(t)50,

t~x0 ,b,q!5
1

qEx0

b

eu(z)E
2`

z

e2u(y)dydz, ~3!

where u(x)5U(x)/q is a dimentionless potential profile
Evidently in physical systems we cannot observe the mic
scopic initial conditions. However the MFPT of Eq.~3! it is
sufficient to obtain the MFPT with arbitrary macroscopic in
tial distribution by simple integration. Therefore we furth
study t(x0 ,b,q) because it contains the full informatio
about the system. If 0,x0,l , the decay timet5t1 for the
potential profile of Eq.~2! is

t1~x0 ,b,q!5
b2l

k
2

l 2x0

h
1

q~h1k!

h2k
eE/q2

q

h2 ehx0 /q

2
h1k

k2h
~12e2A/q!2

q

kh
e(E2A)/q. ~4!

If l ,x0,b, the decay timet5t2 is

t2~x0 ,b,q!5
1

k Fq~h1k!

hk
~e2A/q2e2DE/q!1b2x0

1
q

h
~e(E2DE)/q2e(E2A)/q!G . ~5!

HereA5k(b2l ), andDE5k(x02l ).
These expressions show that at large noise intensity

decay timet(q) decreases with noise as 1/q for arbitraryh.
When the noise intensity is small,q!uEu the influence of the
potential barrier becomes significant. ForE,0 and h,0,
the barrier is absent, and the NES effect, also known as n
©2001 The American Physical Society02-1
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delayed decay, appears whenuhu,k and x0 is nearl @7#.
Indeed, for q!uEu,A, uE2Au the decay timet2(l ,b,q)
grows with noise temperatureq. Whenx050, the decay time
always decreases withq.

In the case with potential barrier (E.0, h.0) the escape
time depends on the initial position of the particle with r
spect to the potential barrier. When the particle is within
potential well (x0,l ) the decay time of metastable sta
increases infinitely whenq→0, because if the noise is ab
sent, the particle can never surmount the potential bar
For q!E decay time~4! coincides with the Kramers’ time
which in this case reads

t1~x0 ,b,q!.tk5
q~h1k!

h2k
eE/q →

q→0
`. ~6!

Whenl ,x0,b the initial state of the particle is unstable.
the absence of noise, the escape time from this unstable
is a finite value:t2(x0 ,b,0)5(b2x0)/k, which does not de-
pend on the potential well. When we add the noise the in
ence of potential well becomes important. It follows from t
exact expression of Eq.~5! that the MFPT rises to infinity if
DE,E,

t2~x0 ,b,q!.
q

kh
e(E2DE)/q →

q→0

`, ~7!

while for the casej(t)50 we have the decay time obtaine
from the deterministic Eq.~1!, i.e., the MFPT has a singular
ity at q50, whenDE,E. From a physical point of view this
singularity can be explained as follows: When the particle
initially located in the regionl ,x0,b, a small quantity of
noise added in the system can eventually push the par
into potential well. Then, the particle will be trapped the
for a long time because the well is very deep. This type
trajectories of the Brownian particles therefore leads to a
‘‘tail’’ in the first passage time distribution~FPTD! w(t). If
the potential well is very deep, namely,E.DE, the trapping
time is so long that the integral for MFPT,

t5E
0

`

tw~ t !dt, ~8!

diverges whenq→0. The FPTD obeys the backward Fokke
Planck equation and can be obtained for piecewise lin
potential using the Laplace transform method@12#. The
Laplace transform of the FPTD for our potential, whenh
5k and l ,x0,b, reads

ŵ~s!5E
0

`

w~ t !e2stdt5
B~x0 ,s!

B~b,s!
, ~9!

where

B~x,s!5cmelx22ml 2cle2mx12ll 1g2e2b~e2mx1elx!
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and c5k/2q, g5As/q, p5Ac21g2, l5p2c, m
5p1c, b5kl /q. Using the limit theorems of Laplace
transform, we can obtain from Eq.~9! the asymptotic expres
sion for t→` andq!E,

was~ t !5G~ t !F 11
1

2
S t11

1

2
tk

t0
2

t1
2

t0t
D e[ 24u(x0)u(b)/tkt]G ,

G~ t !5
t0

Aptkt
3

expS 2
~ t2t0!2

tkt
D ,

where u(x)5(x22l )/k, t05u(b)2u(x0), t15u(b)
1u(x0), andtk54q/k2. The time dependence ofwas(t) is
shown in Fig. 1 for three different values of the initial pos
tion x052.5 (DE.E), x052 (DE5E), and x051.2 (DE
,E). One can see that the tail of the FPTD rises whenDE
decreases. IfDE.E, the trapping time in the well is not very
long and the integral of Eq.~8! always converges. Neverthe
less, the average decay time increases with small noise, r
the maximum and, then, decreases. The plots oft2(q) for
various relations betweenDE andE are shown in Fig. 2. The
main conclusion from the above analysis is that the stro
effect of NES can appear for the fixed potential profile w
barrier, if the initial probability distribution is located within
the interval (l ,b), i.e., in an unstable state beyond the pote
tial well. The physical system can be brought in this no
equilibrium state by a sudden change of control paramet
Examples of such situations include spinodal decomposi
in the dynamics of phase transitions and the process of l
switch-on @4,13#. Such relaxation processes in the syste
which are far from equilibrium attract now a great deal
attention@10,11,14#.

The main aim of this Rapid Communication, however,
to study the escape from the metastable state with an in
distribution located within the potential well in the presen
of periodical driving. Further we will apply the above resul

FIG. 1. Semilogarithmic plot of the asymptotic behavior of t
FPTD was(t) vs time t for three values of the initial positionxo

52.5 (DE.E, dotted-dashed line!, x052 (DE5E, solid line!,
and x051.2 (DE,E, dashed line!. The parameters areb53,
k5h51, l 51, q50.01.
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obtained in the static case, for analysis of periodical fo
effect. Let us consider the same potential profileU(x) of Eq.
~2! but with h50. The driving force isF(t)5an(t), where
n(t) is the dichotomous signal switching between61 with
periodT anda is the amplitude. We choosen(t)521 ~i.e.,
the barrier is absent! for the first half of the period. The exac
expression for the MFPT when the potential varies with ti
is unknown. Three recent papers@14# develop a theory of
escape rates for periodically driven systems. Smelyan
et al. consider the case of a high potential barrier and sm
driving amplitude. Lehmannet al. consider the regime o
strong and moderately fast driving. Maier and Stein anal
the crossover regime. In all these cases the deterministic
cape time is infinity. In the present work we consider t
different regime of strong and moderately slow modulat
when the deterministic escape time is finite.

Therefore, we first start our investigation from the det
ministic caseq50, and second we define the condition f
the NES effect when noise intensity is small. Ifx050, Eq.
~1! has a periodic solution in the deterministic regime forT
,2l /a. In this casex(t),l for any t and the particle al-
ways remains in the metastable state. If the period is

T.2l /a, ~10!

the particle surmounts the potential barrier at timet5l /a.
To obtain the NES effect we should consider only the ca
when the states are unstable without noise@8#. Consequently
the first condition for NES is given by Eq.~10!. It follows
from the above analysis that the decay time in the prese
of noise strongly depends on potential barrier, namely,
barrier is responsible for the strong increasing of decay t
with noise. The exact expressions for fixed potential sh
that increasing of decay time in the case without barrie
much smaller, and it appears only if the particle is near
point x05l @see Eqs.~4! and~5!#. Therefore, it is important
to consider two cases:~i! t(0,b,0),T/2 and ~ii ! t(0,b,0)
.T/2. In the first case the modulation frequency is so l

FIG. 2. Normalized decay timet2(q)/td ~with td the determin-
istic time! vs the dimensionless noise intensityq/E for the same
parameters as Fig. 1. Inset: the potentialU(x) of Eq. ~2!.
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that during the entire process of decay the potential pro
F(x,t) has no barrier. In this case the average escape tim
not increased by the noise@see Eq.~4! at x050 and h5
2a#. In the case oft(0,b,0).T/2, average escape time ca
be represented as follows:

t~0,b,0!5
T

2
1t@x~T/2!,b,0#, ~11!

wherex(T/2) is the position of the particle at timet5T/2.
The conditions~10! andt(0,b,0).T/2 together mean that

l ,x~T/2!,b. ~12!

Now we add a small quantity of noise into the system. T
MFPT t(0,b,q) can be written as

t~0,b,q!5t~0,xi ,q!1t~xi ,b,q!, ~13!

where xi is an arbitrary point between 0 andb. For xi
5x(T/2) and very small noise, the first term on the righ
hand side of Eq.~13! is approximately equal to the determin
istic time: t@0,x(T/2),q#.t@0,x(T/2),0#5T/2, because the
MFPT varies smoothly with noise, when the barrier is abs
@see Eq.~4!#. In this case,t(0,b,q).T/21t@x(T/2),b,q#,
and t@x(T/2),b,q#@t@x(T/2),b,0# because of the potentia
barrier, which makes the average escape time very large
for q→0 @see Eq.~7!#. As a result the decay timet(0,b,q)
will increase withq and the NES appears.@The decay time
t(0,b,q) will not grow infinitely atq→0 because the barrie
exists for only a half of the period.# Thus, we may conclude
that inequality ~12! must be the condition for NES. Thi
inequality can be rewritten as follows:

2
l

a
,T,2

ab1kl

a~a1k!
. ~14!

Inequality ~14! and the conditiona,k give the area on
the (T,a) plane where the NES effect takes place. In Fig
we show this area fork51, l 52, andb57, and the results
of numerical simulations~shaded area!. We perform 3000
different realizations of the decay processx(t) to determine
the average escape time for each couple of values of
amplitudea and the periodT of the driving force. We con-
sider more than 100 points on the (T,a) plane. We find that
within the area defined by inequality~14! the NES effect is
very strong: the average escape time increases more
10% above the deterministic escape time. Outside this a
and below the lower boundary the deterministic decay ti
becomes infinite and NES disappears. In the presenc
noise we obtain Kramers-like behavior. This case was st
ied in detail by Lehmannet al. @14#. Inside the area the mag
nitude of the NES effect decreases from the lower to
upper boundary. Above the upper boundary the NES ef
decreases sharply. When the periodT and the amplitudea of
the driving force are chosen near the upper boundary of
~14!, the potential barrier is very small or absent during t
process of decay. It explains why the effect is very sm
when we are near this boundary. We also carried out sim
lations for a.k and found the NES effect. This paramet
2-3
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region, however, gives less information about the mec
nisms of the NES effect from the viewpoint of the interpl
between the regular, random, and periodical forces. In
region in fact the deterministic motion of the particle is ch
acterized by oscillations and the driving force prevails
regular one described by the potentialU(x).

Therefore, we conclude that the numerical simulations
in good agreement with the theory. The main mechanism

FIG. 3. Shaded area is the region of the plane (lnT,a), where
the NES effect is very strong: the average escape time is gre
than 10% above the deterministic escape time. The parameter
b57, k51, l 52. Inset: the average escape time vs the noise
tensity fora50.3 andT513.5. The dashed line indicates the det
ministic escape time.
e
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NES is defined correctly: it is the role of the potential barr
which appears after the particle has crossed the pointl of
maximal potential. Consequently inequality~12! is the most
general condition for the NES effect because it can be
plied to a system described by an arbitrary potential w
metastable state and wherel is the x-coordinate of the maxi
mum of the barrier appearing att5T/2. The mechanism of
NES explains why the FPT distributions obtained in simu
tions and in experiments are multipeaked, periodic, and w
an exponential time decaying envelop@6,8#. The peaks ap-
pear only for small noise intensity, where the NES effe
occurs. The first peak corresponds to the deterministic esc
time. The second peak arises because the small noise
vides the above-considered inverse probability curre
which moves some particles into the potential well. The
turned particles can escape only in one period. Therefore
second peak is one period apart from the first one. After e
period we have the same physical situation, and as a co
quence, fewer particles go back into the potential w
Therefore, the probability peaks have periodT and they de-
crease with time. The probabilities of escape are indepen
and equal for successive oscillations of the potential. S
the escape probability per oscillation isp, the probability to
escape at thenth cycle is (12p)n21p.peae2(at/T), where
2a5 ln(12p) and n.t/T. Therefore, the magnitude of th
FPT peaks are exponentially decreasing with time.

We acknowledge Dr. R. N. Mantegna for carefully rea
ing the manuscript. This work was supported by INFM
MURST, and RFBR~Project Nos. 99-02-17544 and 00-15
96620!.
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